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The Baltic Sea CO, - O, system

Atmosphere Acidic rain
(‘h-ﬁ‘\r
Acidic rain ,,,/,W COzT g
e’ —

-
Cr. Ar Cog biological production

i Ri\,/e'r Catchment
* area m
North Sea C‘F"‘ Corg + 02

The connection between eutrophication,
acidification and climate change is through
primary production and mineralization of both
organic matters from the sea and from land.
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The acid-base balance and total alkalinity

Total alkalinity as the sum of
proton (H*) acceptors minus
proton doners
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Calculated Baltic Sea surface pH
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pH and alkalinity change in the redox environment
of the Baltic Sea
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(A) Total alkalinity and (B) pH as functions of oxygen concentration for 0-250 m at station BY15, the
Gotland Deep. The observational data (1995-2004) are indicated by =1 standard deviation of the mean
(light gray area). The black markers and lines represent a model run including internal generation of A,
and the gray markers represent a model run excluding internal generation of A;.
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Primary production and mineralization
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Alkalilinity change in the redox environment of the
Baltic Sea

A) Observed at BY15 in the Eastern Gotland basin: A (pmol kg")
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Fig. 8. Total alkalinity at the BY15 station in the Eastern Gotland basin.

The redoxcline (zero oxygen concentration) is indicated by thin black lines.

(A) Observations (SHARK-data). (B) Model results with internal A; generation and depletion.
(C) Model results without internal A; generation and depletion.
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Baltic-C modelling system and scenario design
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Terrestrial model: LPG-GUESS
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Model results based on two possible developments: Successful
management (BSAP-B1) and management failure (BAU-A2)
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Model results based on two possible developments: Successful
management (BSAP-B1) and management failure (BAU-A2)
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The Baltic Sea CO, - O, system in the future?
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Summary: No reductions

; =z % Z : With no reduction in CO, emissions and nutrient
No mdu_ctlﬂ" in COZ and nutrient l_nputs inputs, water temperatures will increase, sea ice will

decrease, and cyanobacteria blooms worsen.

Increased CO, emissions lead to increased marine
acidification. More nutrient inputs leads to increased
algal blooms, while warmer waters decreases the
uptake of O, in the water. Increased acidification and
increased anoxic waters will threaten the marine
ecosystem.

Se

*T Increased air and water temperatures
Decreased sea ice

i*1 Acidification worsens

- Reduced water quality

.":' Increased cyanobacteria blooms

"
# Increased forest growth & carbon transport
= = Poorcoastal biodiversity & health

E Increased anoxia

Diagrams created by the Integration and Application Network, University of
Maryland Center for Environmental Science (ian.umces.edu) with guidance
from A. Omstedt.
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Summary: Good managements

Good management decisions such as:

Good management decisions reduce CO, and nutrient inputs

e switching to alternative renewable energy for
industry, vehicles, and shipping;

e improved land management and farming practices;

e improved lifestyle choices including food
consumption, travelling, and living.

While marine acidification and climate change will
continue, it will be slowed down.

lT Slight increase in air and water temperature
g Slight decrease in sea ice

:*1 Slight increase in marine acidification

. Improved water quality

ﬁ: Good coastal biodiversity & health

E Decreased anoxia

Diagrams created by the Integration and Application Network, University of
Maryland Center for Environmental Science (ian.umces.edu) with guidance

from A. Omstedt.
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Summary and conclusions

» Marine acidification is influenced by increasing atmospheric CO,,
eutrophication, changes in alkalinity from rivers, changes in redox
state and indirectly climate change.

« The acidification is not sensitive to GCM used or GCM initial
conditions. Instead the main factor is the CO, emissions. On that
climate and river changes add modifications. Changes in hydrology
may considerable change the Baltic Sea alkalinity distribution.

* Increased nutrient load will not inhibit future acidification in the Baltic
Sea, but the seasonal pH cycle will become amplified due to
increased biological production and mineralization. All examined
scenarios indicate future acidification of the whole Baltic Sea and at
all depth.

« Apart from decreasing pH, we also project a decreasing saturation
state of calcium carbonate, a decreasing respiration index, and
increasing hypoxic and anoxic waters, all of which will further
threaten the marine ecosystem.

 The Baltic Sea will most probably become more acid in the future.
Substantial reductions in fossil-fuel burning are needed and are not
in conflict with the nutrient reductions suggested in the Baltic Sea
Action plan.
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Thanks for your interest!
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Management options: Marine acidification and
hypoxia or?

Annual average surface-water pH in the Eastern Gotland Basin
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Summary: Current state

- - The Baltic Sea will become more acidic and more
curmntmfﬂ nutrients will leak into the system unless strong steps
are taken to reduce CO, and nutrient loads.

31 Increasing air and water temperatures
g Decreasing sea ice

i=1 Slight increase in marine acidification
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*s * Annual cyanobacteria blooms
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Diagrams created by the Integration and Application Network, University of
Maryland Center for Environmental Science (ian.umces.edu) with guidance
from A. Omstedt.
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